Nilpotent orbits and theta-stable parabolic subalgebras

Author:

Noël Alfred

Abstract

In this work, we present a new classification of nilpotent orbits in a real reductive Lie algebra g {\mathfrak {g}} under the action of its adjoint group. Our classification generalizes the Bala-Carter classification of the nilpotent orbits of complex semisimple Lie algebras. Our theory takes full advantage of the work of Kostant and Rallis on p C {\mathfrak {p}}_{{}_{\mathbb {C}}} , the “complex symmetric space associated with g {\mathfrak {g}} ”. The Kostant-Sekiguchi correspondence, a bijection between nilpotent orbits in g {\mathfrak {g}} and nilpotent orbits in p C {\mathfrak {p}}_{{}_{\mathbb {C}}} , is also used. We identify a fundamental set of noticed nilpotents in p C {\mathfrak {p}}_{{}_{\mathbb {C}}} and show that they allow us to recover all other nilpotents. Finally, we study the behaviour of a principal orbit, that is an orbit of maximal dimension, under our classification. This is not done in the other classification schemes currently available in the literature.

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference35 articles.

1. Classes of unipotent elements in simple algebraic groups. I;Bala, P.;Math. Proc. Cambridge Philos. Soc.,1976

2. Classes of unipotent elements in simple algebraic groups. I;Bala, P.;Math. Proc. Cambridge Philos. Soc.,1976

3. Groupes réductifs;Borel, Armand;Inst. Hautes \'{E}tudes Sci. Publ. Math.,1965

4. Conjugacy classes in linear groups;Burgoyne, N.;J. Algebra,1977

5. A Wiley-Interscience Publication;Brown, William C.,1988

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of horizontal s;Compositio Mathematica;2015-12-07

2. A computational approach to the Kostant–Sekiguchi correspondence;Pacific Journal of Mathematics;2013-08-28

3. Tempered representations and nilpotent orbits;Representation Theory of the American Mathematical Society;2012-12-13

4. A classification of nilpotent orbits in infinitesimal symmetric spaces;Journal of Algebra;2010-03

5. On Nilpotent Orbits of SL n and Sp2n over a Local Non-Archimedean Field;Algebras and Representation Theory;2009-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3