Infinitesimal maximal symmetry and Ricci soliton solvmanifolds

Author:

Gordon Carolyn,Jablonski Michael

Abstract

This work addresses the questions: (i) Among all left-invariant Riemannian metrics on a given Lie group, is there any whose isometry group or isometry algebra contains that of all others? (ii) Do expanding left-invariant Ricci solitons exhibit such maximal symmetry? Question (i) is addressed both for semisimple and for solvable Lie groups. Building on previous work of the authors on Einstein metrics, a complete answer is given to (ii): expanding homogeneous Ricci solitons have maximal isometry algebras although not always maximal isometry groups.

As a consequence of the tools developed to address these questions, partial results of Böhm, Lafuente, and Lauret are extended to show that left-invariant Ricci solitons on solvable Lie groups are unique up to scaling and isometry.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Reference28 articles.

1. The Alekseevskii conjecture in low dimensions;Arroyo, Romina M.;Math. Ann.,2017

2. Homogeneous Riemannian spaces of negative curvature;Alekseevskiĭ, D. V.;Mat. Sb. (N.S.),1975

3. The Ricci flow on solvmanifolds of real type;Böhm, Christoph;Adv. Math.,2019

4. Homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds;Böhm, Christoph;Geom. Topol.,2022

5. Non-compact Einstein manifolds with symmetry;Böhm, Christoph;J. Amer. Math. Soc.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3