Recent progress on the Tate conjecture

Author:

Totaro Burt

Abstract

We survey the history of the Tate conjecture on algebraic cycles. The conjecture is closely related with other big problems in arithmetic and algebraic geometry, including the Hodge and Birch–Swinnerton-Dyer conjectures. We conclude by discussing the recent proof of the Tate conjecture for K3 surfaces over finite fields.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference48 articles.

1. On the Shafarevich and Tate conjectures for hyper-Kähler varieties;André, Yves;Math. Ann.,1996

2. Panoramas et Synth\`eses [Panoramas and Syntheses];André, Yves,2004

3. The Shafarevich-Tate conjecture for pencils of elliptic curves on 𝐾3 surfaces;Artin, M.;Invent. Math.,1973

4. Construction de courbes sur les surfaces K3 (d’après Bogomolov-Hassett-Tschinkel, Charles, Li-Liedtke, Madapusi Pera, Maulik…);Benoist, Olivier;Ast\'{e}risque,2015

5. Notes on elliptic curves. II;Birch, B. J.;J. Reine Angew. Math.,1965

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the observability of Galois representations and the Tate conjecture;Journal of Number Theory;2023-08

2. HPD-invariance of the Tate conjecture(s);Journal of Noncommutative Geometry;2023-02-07

3. Curves on K3 surfaces;Duke Mathematical Journal;2022-11-01

4. A note on Tate’s conjectures for abelian varieties;Essential Number Theory;2022-10-26

5. Isogenies of certain K3 surfaces of rank 18;Research in the Mathematical Sciences;2021-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3