Finite element/holomorphic operator function method for the transmission eigenvalue problem

Author:

Gong Bo,Sun Jiguang,Turner Tiara,Zheng Chunxiong

Abstract

The transmission eigenvalue problem arises from the inverse scattering theory for inhomogeneous media. It plays a key role in the unique determination of inhomogeneous media. Furthermore, transmission eigenvalues can be reconstructed from the scattering data and used to estimate the material properties of the unknown object. The problem is posted as a system of two second order partial differential equations and is nonlinear and non-selfadjoint. It is challenging to develop effective numerical methods. In this paper, we formulate the transmission eigenvalue problem as the eigenvalue problem of a holomorphic operator function. The Lagrange finite elements are used for the discretization and the convergence is proved using the abstract approximation theory for holomorphic Fredholm operator functions. The spectral indicator method is employed to compute the eigenvalues. Numerical examples are presented to validate the proposed method.

Funder

Simons Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference48 articles.

1. Resolvent estimates for wave operators in Lipschitz domains;Ammari, Kaïs;Calc. Var. Partial Differential Equations,2021

2. A Legendre-Galerkin spectral approximation and estimation of the index of refraction for transmission eigenvalues;An, Jing;Appl. Numer. Math.,2016

3. A spectral-element method for transmission eigenvalue problems;An, Jing;J. Sci. Comput.,2013

4. Eigenvalue problems;Babuška, I.,1991

5. Finding eigenvalues of holomorphic Fredholm operator pencils using boundary value problems and contour integrals;Beyn, Wolf-Jürgen;Integral Equations Operator Theory,2014

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3