Compositional flow in porous media: Riemann problem for three alkanes

Author:

Matos Vítor,Marchesin Dan

Abstract

We consider the flow in a porous medium of three fluid compounds such as alkanes with different boiling points; the compounds partition into a liquid and a gaseous phase. Under some judiciously chosen physical assumptions, the flow is governed by a system of conservation laws; we derive the expression for the Rankine-Hugoniot locus, which involves a parameter dependent fifth degree polynomial in two variables. This expression allows us to establish in detail the bifurcation behavior of the locus

Supplemented by the analysis of characteristic speeds and eigenvectors, the bifurcation analysis of the Rankine-Hugoniot locus is the enabling fulcrum for solving the Riemann problem for all data, which should be a prototype for general three component flow of two phases in porous media. Despite the existence of many similarities between this model and earlier models where proofs were not possible, here we managed to prove analytically many features.

This system of conservation laws has three equations yet it leads to a characteristic polynomial of degree two; this peculiar feature has been unveiled recently, and it is typical of flow of fluids that change density upon changing phase.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3