The Vlasov–Poisson–Landau system in the weakly collisional regime

Author:

Chaturvedi Sanchit,Luk Jonathan,Nguyen Toan

Abstract

Consider the Vlasov–Poisson–Landau system with Coulomb potential in the weakly collisional regime on a 3 3 -torus, i.e. t F ( t , x , v ) + v i x i F ( t , x , v ) + E i ( t , x ) v i F ( t , x , v ) = ν Q ( F , F ) ( t , x , v ) , E ( t , x ) = Δ 1 ( R 3 F ( t , x , v ) d v T 3 R 3 F ( t , x , v ) d v d x ) , \begin{align*} \partial _t F(t,x,v) + v_i \partial _{x_i} F(t,x,v) + E_i(t,x) \partial _{v_i} F(t,x,v) = \nu Q(F,F)(t,x,v),\\ E(t,x) = \nabla \Delta ^{-1} (\int _{\mathbb R^3} F(t,x,v)\, \mathrm {d} v - {{\int }\llap {-}}_{\mathbb T^3} \int _{\mathbb R^3} F(t,x,v)\, \mathrm {d} v \, \mathrm {d} x), \end{align*} with ν 1 \nu \ll 1 . We prove that for ϵ > 0 \epsilon >0 sufficiently small (but independent of ν \nu ), initial data which are O ( ϵ ν 1 / 3 ) O(\epsilon \nu ^{1/3}) -Sobolev space perturbations from the global Maxwellians lead to global-in-time solutions which converge to the global Maxwellians as t t\to \infty . The solutions exhibit uniform-in- ν \nu Landau damping and enhanced dissipation.

Our main result is analogous to an earlier result of Bedrossian for the Vlasov–Poisson–Fokker–Planck equation with the same threshold. However, unlike in the Fokker–Planck case, the linear operator cannot be inverted explicitly due to the complexity of the Landau collision operator. For this reason, we develop an energy-based framework, which combines Guo’s weighted energy method with the hypocoercive energy method and the commuting vector field method. The proof also relies on pointwise resolvent estimates for the linearized density equation.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference122 articles.

1. The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential;Alexandre, R.;Anal. Appl. (Singap.),2011

2. Global existence and full regularity of the Boltzmann equation without angular cutoff;Alexandre, R.;Comm. Math. Phys.,2011

3. The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential;Alexandre, R.;J. Funct. Anal.,2012

4. Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data;Bardos, C.;Ann. Inst. H. Poincar\'{e} Anal. Non Lin\'{e}aire,1985

5. A priori estimates and existence results for the Vlasov and Boltzmann equations;Bardos, C.,1986

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linear Landau damping in 3 ;Journées équations aux dérivées partielles;2024-07-22

2. Recent progress in the mathematical analysis of active suspensions;Journées équations aux dérivées partielles;2024-07-22

3. Taylor dispersion and phase mixing in the non‐cutoff Boltzmann equation on the whole space;Proceedings of the London Mathematical Society;2024-06-27

4. A structure and asymptotic preserving scheme for the Vlasov-Poisson-Fokker-Planck model;Journal of Computational Physics;2024-02

5. The Massless Electron Limit of the Vlasov–Poisson–Landau System;Communications in Mathematical Physics;2024-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3