Heat kernels for reflected diffusions with jumps on inner uniform domains

Author:

Chen Zhen-Qing,Kim Panki,Kumagai Takashi,Wang Jian

Abstract

In this paper, we study sharp two-sided heat kernel estimates for a large class of symmetric reflected diffusions with jumps on the closure of an inner uniform domain D D in a length metric space. The length metric is the intrinsic metric of a strongly local Dirichlet form. When D D is an inner uniform domain in the Euclidean space, a prototype for a special case of the processes under consideration is symmetric reflected diffusions with jumps on D D , whose infinitesimal generators are non-local (pseudo-differential) operators L \mathcal {L} on D D of the form \[ L u ( x ) = 1 2 i , j = 1 d x i ( a i j ( x ) u ( x ) x j ) + lim ε 0 { y D : ρ D ( y , x ) > ε } ( u ( y ) u ( x ) ) J ( x , y ) d y \mathcal {L} u(x)\! =\!\frac 12 \!\sum _{i, j=1}^d\! \frac {\partial }{\partial x_i}\! \left (\!\!a_{ij}(x) \frac {\partial u(x)}{\partial x_j}\!\right ) \!+ \lim _{\varepsilon \downarrow 0}\! \int _{\{y\in D: \, \rho _D(y, x)>\varepsilon \}}\!\! (u(y)-u(x)) J(x, y)\, dy \] satisfying “Neumann boundary condition”. Here, ρ D ( x , y ) \rho _D(x,y) is the length metric on D D , A ( x ) = ( a i j ( x ) ) 1 i , j d A(x)=(a_{ij}(x))_{1\leq i,j\leq d} is a measurable d × d d\times d matrix-valued function on D D that is uniformly elliptic and bounded, and \[ J ( x , y ) 1 Φ ( ρ D ( x , y ) ) [ α 1 , α 2 ] c ( α , x , y ) ρ D ( x , y ) d + α ν ( d α ) , J(x,y)≔\frac {1}{\Phi (\rho _D(x,y))} \int _{[\alpha _1, \alpha _2]} \frac {c(\alpha , x,y)} {\rho _D(x,y)^{d+\alpha }} \,\nu (d\alpha ), \] where ν \nu is a finite measure on [ α 1 , α 2 ] ( 0 , 2 ) [\alpha _1, \alpha _2] \subset (0, 2) , Φ \Phi is an increasing function on [ 0 , ) [ 0, \infty ) with c 1 e c 2 r β Φ ( r ) c 3 e c 4 r β c_1e^{c_2r^{\beta }} \le \Phi (r) \le c_3 e^{c_4r^{\beta }} for some β [ 0 , ] \beta \in [0,\infty ] , and c ( α , x , y ) c(\alpha , x, y) is a jointly measurable function that is bounded between two positive constants and is symmetric in ( x , y ) (x, y) .

Funder

Japan Society for the Promotion of Science

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference37 articles.

1. Energy inequalities for cutoff functions and some applications;Andres, Sebastian;J. Reine Angew. Math.,2015

2. Non-negative solutions of linear parabolic equations;Aronson, D. G.;Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3),1968

3. Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps;Barlow, Martin T.;Math. Z.,2009

4. Asymptotic Analysis for Periodic Structures

5. Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains;Bass, Richard F.;Ann. Probab.,1991

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heat kernel for reflected diffusion and extension property on uniform domains;Probability Theory and Related Fields;2024-03-05

2. Hausdorff dimensions of inverse images and collision time sets for symmetric Markov processes;Electronic Journal of Probability;2024-01-01

3. The Peskin Problem with \({\boldsymbol{\dot B^1_{\infty,\infty }}}\) Initial Data;SIAM Journal on Mathematical Analysis;2023-11-01

4. Endpoint Sobolev Theory for the Muskat Equation;Communications in Mathematical Physics;2022-11-12

5. Two-Sided Heat Kernel Estimates for Symmetric Diffusion Processes with Jumps: Recent Results;Springer Proceedings in Mathematics & Statistics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3