Large deviations for small noise diffusions over long time

Author:

Budhiraja Amarjit,Zoubouloglou Pavlos

Abstract

We study two problems. First, we consider the large deviation behavior of empirical measures of certain diffusion processes as, simultaneously, the time horizon becomes large and noise becomes vanishingly small. The law of large numbers (LLN) of the empirical measure in this asymptotic regime is given by the unique equilibrium of the noiseless dynamics. Due to degeneracy of the noise in the limit, the methods of Donsker and Varadhan [Comm. Pure Appl. Math. 29 (1976), pp. 389–461] are not directly applicable and new ideas are needed. Second, we study a system of slow-fast diffusions where both the slow and the fast components have vanishing noise on their natural time scales. This time the LLN is governed by a degenerate averaging principle in which local equilibria of the noiseless system obtained from the fast dynamics describe the asymptotic evolution of the slow component. We establish a large deviation principle that describes probabilities of divergence from this behavior. On the one hand our methods require stronger assumptions than the nondegenerate settings, while on the other hand the rate functions take simple and explicit forms that have striking differences from their nondegenerate counterparts.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3