Canonical equivariant cohomology classes generating zeta values of totally real fields

Author:

Bannai Kenichi,Hagihara Kei,Yamada Kazuki,Yamamoto Shuji

Abstract

It is known that the special values at nonpositive integers of a Dirichlet L L -function may be expressed using the generalized Bernoulli numbers, which are defined by a generating function. The purpose of this article is to consider the generalization of this classical result to the case of Hecke L L -functions of totally real fields. Hecke L L -functions may be expressed canonically as a finite sum of zeta functions of Lerch type. By combining the non-canonical multivariable generating functions constructed by Shintani [J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), pp. 393–417], we newly construct a canonical class, which we call the Shintani generating class, in the equivariant cohomology of an algebraic torus associated to the totally real field. Our main result states that the specializations at torsion points of the derivatives of the Shintani generating class give values at nonpositive integers of the zeta functions of Lerch type. This result gives the insight that the correct framework in the higher dimensional case is to consider higher equivariant cohomology classes instead of functions.

Funder

Japan Society for the Promotion of Science

Publisher

American Mathematical Society (AMS)

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference31 articles.

1. Algebraic theta functions and the 𝑝-adic interpolation of Eisenstein-Kronecker numbers;Bannai, Kenichi;Duke Math. J.,2010

2. 𝑝-adic polylogarithms and 𝑝-adic Hecke 𝐿-functions for totally real fields;Bannai, Kenichi;J. Reine Angew. Math.,2022

3. The Hodge Realization of the Polylogarithm and the Shintani Generating Class for Totally Real Fields;Bannai, Kenichi,2022

4. Fonctions zeta 𝑝-adiques d’une classe de rayon des corps de nombres totalement réels;Barsky, Daniel,1978

5. Topological polylogarithms and 𝑝-adic interpolation of 𝐿-values of totally real fields;Beilinson, Alexander;Math. Ann.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3