Conformal tilings I: foundations, theory, and practice

Author:

Bowers Philip,Stephenson Kenneth

Abstract

This paper opens a new chapter in the study of planar tilings by introducing conformal tilings. These are similar to traditional tilings in that they realize abstract patterns of combinatorial polygons as concrete patterns of geometric shapes, the tiles. In the conformal case, however, these geometric tiles carry prescribed conformal rather than prescribed euclidean structure. The authors develop the topic from the ground up: definitions and terminology, basic theory on existence, uniqueness and properties, numerous experiments and examples, comparisons to traditional tilings, patterns unique to conformal tiling, and details on computability through circle packing. Special attention is placed on aperiodic hierarchical tilings and on connections between abstract combinatorics on one hand and their geometric realizations on the other. Many of the motivations for studying tilings remain unchanged, not least being the pure beauty and intricacy of the patterns.

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology

Reference43 articles.

1. McGraw-Hill Series in Higher Mathematics;Ahlfors, Lars V.,1973

2. Uniform infinite planar triangulations;Angel, Omer;Comm. Math. Phys.,2003

3. Encyclopedia of Mathematics and its Applications;Baake, Michael,2013

4. Uniformization of Sierpiński carpets in the plane;Bonk, Mario;Invent. Math.,2011

5. Philip L. Bowers and Kenneth Stephenson, Conformal tilings II: Local isomorphism, hierarchy, and conformal type.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combinatorics Encoding Geometry: The Legacy of Bill Thurston in the Story of One Theorem;In the Tradition of Thurston;2020

2. Shape convergence for aggregate tiles in conformal tilings;Proceedings of the American Mathematical Society;2019-06-27

3. Conformal tilings II: Local isomorphism, hierarchy, and conformal type;Conformal Geometry and Dynamics of the American Mathematical Society;2019-04-26

4. A linearized circle packing algorithm;Computational Geometry;2017-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3