Following the proof by Hecht and Schmid of Blattner’s conjecture for
K
K
multiplicities of representations belonging to the discrete series it turned out that some results which were earlier known with some hypothesis on the Harish-Chandra parameter of the discrete series representation could be extended removing those hypotheses. For example this was so for the geometric realization problem. Occasionally a few other results followed by first proving them for Harish-Chandra parameters which are sufficiently regular and then using Zuckerman translation functors, wall crossing methods, etc. Recently, Hongyu He raised the question (private communication) of whether the characterization of a discrete series representation by its lowest
K
K
-type, which was proved by this author and R. Hotta with some hypothesis on the Harish-Chandra parameter of the discrete series representations, can be extended to all discrete series representations excluding none, using a combination of these powerful techniques. In this article we will answer this question using Dirac operator methods and a result of Susana Salamanca-Riba.