Generalized nil-Coxeter algebras over discrete complex reflection groups

Author:

Khare Apoorva

Abstract

We define and study generalized nil-Coxeter algebras associated to Coxeter groups. Motivated by a question of Coxeter (1957), we construct the first examples of such finite-dimensional algebras that are not the “usual” nil-Coxeter algebras: a novel 2 2 -parameter type A A family that we call N C A ( n , d ) NC_A(n,d) . We explore several combinatorial properties of N C A ( n , d ) NC_A(n,d) , including its Coxeter word basis, length function, and Hilbert–Poincaré series, and show that the corresponding generalized Coxeter group is not a flat deformation of N C A ( n , d ) NC_A(n,d) . These algebras yield symmetric semigroup module categories that are necessarily not monoidal; we write down their Tannaka–Krein duality.

Further motivated by the Broué–Malle–Rouquier (BMR) freeness conjecture [J. Reine Angew. Math. 1998], we define generalized nil-Coxeter algebras N C W NC_W over all discrete real or complex reflection groups W W , finite or infinite. We provide a complete classification of all such algebras that are finite dimensional. Remarkably, these turn out to be either the usual nil-Coxeter algebras or the algebras N C A ( n , d ) NC_A(n,d) . This proves as a special case—and strengthens—the lack of equidimensional nil-Coxeter analogues for finite complex reflection groups. In particular, generic Hecke algebras are not flat deformations of N C W NC_W for W W complex.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference45 articles.

1. On the classification of finite-dimensional pointed Hopf algebras;Andruskiewitsch, Nicolás;Ann. of Math. (2),2010

2. A proof of a theorem of Coxeter;Assion, Joachim;C. R. Math. Rep. Acad. Sci. Canada,1978

3. On Coxeter diagrams of complex reflection groups;Basak, Tathagata;Trans. Amer. Math. Soc.,2012

4. Pieri operators on the affine nilCoxeter algebra;Berg, Chris;Trans. Amer. Math. Soc.,2014

5. Schubert cells, and the cohomology of the spaces 𝐺/𝑃;Bernšteĭn, I. N.;Uspehi Mat. Nauk,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3