Let
I
\mathbb {I}
be the field of rational numbers or an imaginary quadratic field and
Z
I
\mathbb {Z}_\mathbb {I}
its ring of integers. We study some general lemmas that produce lower bounds
\[
|
B
0
+
B
1
θ
1
+
⋯
+
B
r
θ
r
|
≥
1
max
{
|
B
1
|
,
…
,
|
B
r
|
}
μ
\lvert B_0+B_1\theta _1+\cdots +B_r\theta _r\rvert \ge \frac {1}{\max \{\lvert B_1 \rvert ,\ldots ,\lvert B_r \rvert \}^\mu }
\]
for all
B
0
,
…
,
B
r
∈
Z
I
B_0,\ldots ,B_r \in \mathbb {Z}_{\mathbb {I}}
,
max
{
|
B
1
|
,
…
,
|
B
r
|
}
≥
H
0
\max \{\lvert B_1 \rvert ,\ldots ,\lvert B_r \rvert \} \ge H_0
, given suitable simultaneous approximating sequences of the numbers
θ
1
,
…
,
θ
r
\theta _1,\ldots ,\theta _r
. We manage to replace the lower bound with
1
/
max
{
|
B
1
|
μ
1
,
…
,
|
B
r
|
μ
r
}
1/{\max \{\lvert B_1 \rvert ^{\mu _1},\ldots ,\lvert B_r \rvert ^{\mu _r}\}}
for all
B
0
,
…
,
B
r
∈
Z
I
B_0,\ldots ,B_r \in \mathbb {Z}_{\mathbb {I}}
,
max
{
|
B
1
|
μ
1
,
…
,
|
B
r
|
μ
r
}
≥
H
0
\max \{\lvert B_1 \rvert ^{\mu _1},\ldots ,\lvert B_r \rvert ^{\mu _r}\} \ge H_0
, where the exponents
μ
1
,
…
,
μ
r
\mu _1,\ldots ,\mu _r
are different when the given type II approximating sequences approximate some of the numbers
θ
1
,
…
,
θ
r
\theta _1,\ldots ,\theta _r
better than the others. As an application we research certain linear forms in logarithms. Our results are completely explicit.