On the structure of Hermitian manifolds with semipositive Griffiths curvature

Author:

Ustinovskiy Yury

Abstract

In this paper we establish partial structure results on the geometry of compact Hermitian manifolds of semipositive Griffiths curvature. We show that after appropriate arbitrary small deformation of the initial metric, the null spaces of the Chern–Ricci two-form generate a holomorphic, integrable distribution. This distribution induces an isometric, holomorphic, almost free action of a complex Lie group on the universal cover of the manifold. Our proof combines the strong maximum principle for the Hermitian Curvature Flow (HCF), new results on the interplay of the HCF and the torsion-twisted connection, and observations on the geometry of the torsion-twisted connection on a general Hermitian manifold.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference25 articles.

1. A theorem on holonomy;Ambrose, W.;Trans. Amer. Math. Soc.,1953

2. Hermitian manifolds with zero curvature;Boothby, William M.;Michigan Math. J.,1958

3. Projective manifolds whose tangent bundles are numerically effective;Campana, Frédéric;Math. Ann.,1991

4. The splitting theorem for manifolds of nonnegative Ricci curvature;Cheeger, Jeff;J. Differential Geometry,1971

5. Compact complex manifolds whose tangent bundles satisfy numerical effectivity properties;Demailly, Jean-Pierre,1995

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Hermitian manifolds whose Chern connection is Ambrose-Singer;Transactions of the American Mathematical Society;2023-06-21

2. Positive Hermitian curvature flow on special linear groups and perfect solitons;Proceedings of the American Mathematical Society;2022-09-15

3. Three circle theorem on almost Hermitian manifolds and applications;Calculus of Variations and Partial Differential Equations;2022-07-15

4. Griffiths positivity for Bismut curvature and its behaviour along Hermitian curvature flows;Journal of Geometry and Physics;2021-11

5. A new positivity condition for the curvature of Hermitian manifolds;Mathematische Zeitschrift;2020-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3