Discretizing advection equations with rough velocity fields on non-Cartesian grids

Author:

Jabin Pierre-Emmanuel,Zhou Datong

Abstract

We investigate the properties of discretizations of advection equations on non-Cartesian grids and graphs in general. Advection equations discretized on non-Cartesian grids have remained a long-standing challenge as the structure of the grid can lead to strong oscillations in the solution, even for otherwise constant velocity fields. We introduce a new method to track oscillations of the solution for rough velocity fields on any graph. The method in particular highlights some inherent structural conditions on the mesh for propagating regularity on solutions.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics

Reference44 articles.

1. Exponential self-similar mixing and loss of regularity for continuity equations;Alberti, Giovanni;C. R. Math. Acad. Sci. Paris,2014

2. Transport equation and Cauchy problem for 𝐵𝑉 vector fields;Ambrosio, Luigi;Invent. Math.,2004

3. Lipschitz regularity and approximate differentiability of the DiPerna-Lions flow;Ambrosio, Luigi;Rend. Sem. Mat. Univ. Padova,2005

4. Convergence of numerical approximations to non-linear continuity equations with rough force fields;Ben Belgacem, F.;Arch. Ration. Mech. Anal.,2019

5. Compactness for nonlinear continuity equations;Belgacem, Fethi Ben;J. Funct. Anal.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3