Finite elements for divdiv conforming symmetric tensors in three dimensions

Author:

Chen Long,Huang Xuehai

Abstract

Finite element spaces on a tetrahedron are constructed for div div \operatorname {div}\operatorname {div} -conforming symmetric tensors in three dimensions. The key tools of the construction are the decomposition of polynomial tensor spaces and the characterization of the trace operators. First, the div div \operatorname {div}\operatorname {div} Hilbert complex and its corresponding polynomial complexes are presented. Several decompositions of polynomial vector and tensor spaces are derived from the polynomial complexes. Second, traces for the div div \operatorname {div}\operatorname {div} operator are characterized through a Green’s identity. Besides the normal-normal component, another trace involving combination of first order derivatives of the tensor is continuous across the face. Due to the smoothness of polynomials, the symmetric tensor element is also continuous at vertices, and on the plane orthogonal to each edge. Besides, a finite element for s y m c u r l symcurl -conforming trace-free tensors is constructed following the same approach. Putting all together, a finite element div div \operatorname {div}\operatorname {div} complex, as well as the bubble functions complex, in three dimensions is established.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference23 articles.

1. D. N. Arnold and K. Hu, Complexes from complexes, Found. Comput. Math. 3 (2021). DOI 10:1007/s10208-021-09498-9.

2. Springer Series in Computational Mathematics;Boffi, Daniele,2013

3. Texts in Applied Mathematics;Brenner, Susanne C.,2008

4. Multigrid methods for Hellan-Herrmann-Johnson mixed method of Kirchhoff plate bending problems;Chen, Long;J. Sci. Comput.,2018

5. L. Chen and X. Huang, Discrete Hessian complexes in three dimensions, Preprint, arXiv:2012.10914, 2020.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3