Higher integrability and the number of singular points for the Navier–Stokes equations with a scale-invariant bound

Author:

Barker Tobias

Abstract

First, we show that if the pressure p p (associated to a weak Leray–Hopf solution v v of the Navier–Stokes equations) satisfies p L t ( 0 , T ; L 3 2 , ( R 3 ) ) M 2 , \begin{equation*} \|p\|_{L^{\infty }_{t}(0,T^*; L^{\frac {3}{2},\infty }(\mathbb {R}^3))}\leq M^2, \end{equation*} then v v possesses higher integrability up to the first potential blow-up time T T^* . Our method is concise and is based upon energy estimates applied to powers of | v | |v| and the utilization of a “small exponent”.

As a consequence, we show that if a weak Leray–Hopf solution v v first blows up at T T^* and satisfies the Type I condition v L t ( 0 , T ; L 3 , ( R 3 ) ) M \|v\|_{L^{\infty }_{t}(0,T^*; L^{3,\infty }(\mathbb {R}^3))}\leq M , then v L 2 + O ( 1 M ) ( R 3 × ( 1 2 T , T ) ) . \begin{equation*} \nabla v\in L^{2+O(\frac {1}{M})}(\mathbb {R}^3\times (\tfrac {1}{2}T^*,T^*)). \end{equation*} This is the first result of its kind, improving the integrability exponent of v \nabla v under the Type I assumption in the three-dimensional setting.

Finally, we show that if v : R 3 × [ 1 , 0 ] R 3 v:\mathbb {R}^3\times [-1,0]\rightarrow \mathbb {R}^3 is a weak Leray–Hopf solution to the Navier–Stokes equations with s n 0 s_{n}\uparrow 0 such that sup n v ( , s n ) L 3 , ( R 3 ) M \begin{equation*} \sup _{n}\|v(\cdot ,s_{n})\|_{L^{3,\infty }(\mathbb {R}^3)}\leq M \end{equation*} then v v possesses at most O ( M 20 ) O(M^{20}) singular points at t = 0 t=0 . Our method is direct and concise. It is based upon known ε \varepsilon -regularity, global bounds on a Navier–Stokes solution with initial data in L 3 , ( R 3 ) L^{3,\infty }(\mathbb {R}^3) and rescaling arguments. We do not require arguments based on backward uniqueness nor unique continuation results for parabolic operators.

Publisher

American Mathematical Society (AMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3