On pro-𝑝-Iwahori invariants of 𝑅-representations of reductive 𝑝-adic groups

Author:

Abe N.,Henniart G.,Vignéras M.-F.

Abstract

Let F F be a locally compact field with residue characteristic p p , and let G \mathbf {G} be a connected reductive F F -group. Let U \mathcal {U} be a pro- p p Iwahori subgroup of G = G ( F ) G = \mathbf {G}(F) . Fix a commutative ring R R . If π \pi is a smooth R [ G ] R[G] -representation, the space of invariants π U \pi ^{\mathcal {U}} is a right module over the Hecke algebra H \mathcal {H} of U \mathcal {U} in G G .

Let P P be a parabolic subgroup of G G with a Levi decomposition P = M N P = MN adapted to U \mathcal {U} . We complement a previous investigation of Ollivier-Vignéras on the relation between taking U \mathcal {U} -invariants and various functor like Ind P G \operatorname {Ind}_P^G and right and left adjoints. More precisely the authors’ previous work with Herzig introduced representations I G ( P , σ , Q ) I_G(P,\sigma ,Q) where σ \sigma is a smooth representation of M M extending, trivially on N N , to a larger parabolic subgroup P ( σ ) P(\sigma ) , and Q Q is a parabolic subgroup between P P and P ( σ ) P(\sigma ) . Here we relate I G ( P , σ , Q ) U I_G(P,\sigma ,Q)^{\mathcal {U}} to an analogously defined H \mathcal {H} -module I H ( P , σ U M , Q ) I_\mathcal {H}(P,\sigma ^{\mathcal {U}_M},Q) , where U M = U M \mathcal {U}_M = \mathcal {U}\cap M and σ U M \sigma ^{\mathcal {U}_M} is seen as a module over the Hecke algebra H M \mathcal {H}_M of U M \mathcal {U}_M in M M . In the reverse direction, if V \mathcal {V} is a right H M \mathcal {H}_M -module, we relate I H ( P , V , Q ) c - I n d U G 1 I_\mathcal {H}(P,\mathcal {V},Q)\otimes \operatorname {c-Ind}_\mathcal {U}^G\mathbf {1} to I G ( P , V H M c - I n d U M M 1 , Q ) I_G(P,\mathcal {V}\otimes _{\mathcal {H}_M}\operatorname {c-Ind}_{\mathcal {U}_M}^M\mathbf {1},Q) . As an application we prove that if R R is an algebraically closed field of characteristic p p , and π \pi is an irreducible admissible representation of G G , then the contragredient of π \pi is 0 0 unless π \pi has finite dimension.

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference16 articles.

1. [Abe] N. Abe, Modulo 𝑝 parabolic induction of pro-𝑝-Iwahori Hecke algebra, J. Reine Angew. Math., DOI:10.1515/crelle-2016-0043.

2. [Abe16] N. Abe, Parabolic inductions for pro-𝑝-Iwahori Hecke algebras, arXiv:1612.01312.

3. A classification of irreducible admissible 𝑚𝑜𝑑𝑝 representations of 𝑝-adic reductive groups;Abe, N.;J. Amer. Math. Soc.,2017

4. [AHV] N. Abe, G. Henniart, and M.-F. Vignéras, Modulo 𝑝 representations of reductive 𝑝-adic groups: Functorial properties, to appear in Transaction of AMS.

5. Groupes réductifs sur un corps local;Bruhat, F.;Inst. Hautes \'{E}tudes Sci. Publ. Math.,1972

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EXTENSION BETWEEN SIMPLE MODULES OF PRO-p-IWAHORI HECKE ALGEBRAS;Journal of the Institute of Mathematics of Jussieu;2022-05-20

2. Functorial properties of pro‐p‐Iwahori cohomology;Journal of the London Mathematical Society;2021-05-10

3. A comparison between pro-p Iwahori–Hecke modules and mod p representations;Algebra & Number Theory;2019-10-09

4. Parabolic inductions for pro-p-Iwahori Hecke algebras;Advances in Mathematics;2019-10

5. Parabolic induction in characteristic p;Selecta Mathematica;2018-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3