Maximal varieties and the local Langlands correspondence for 𝐺𝐿(𝑛)

Author:

Boyarchenko Mitya,Weinstein Jared

Abstract

The cohomology of the Lubin-Tate tower is known to realize the local Langlands correspondence for G L ( n ) GL(n) over a nonarchimedean local field. In this article we make progress toward a purely local proof of this fact. To wit, we find a family of formal schemes V \mathcal {V} such that the generic fiber of V \mathcal {V} is isomorphic to an open subset of Lubin-Tate space at infinite level, and such that the middle cohomology of the special fiber of V \mathcal {V} realizes the local Langlands correspondence for a broad class of supercuspidals (those whose Weil parameters are induced from an unramified degree n n extension). The special fiber of V \mathcal {V} is related to an interesting variety X X , defined over a finite field, which is “maximal” in the sense that the number of rational points of X X is the largest possible among varieties with the same Betti numbers as X X . The variety X X is derived from a certain unipotent algebraic group, in an analogous manner as Deligne-Lusztig varieties are derived from reductive algebraic groups.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference23 articles.

1. Lecture Notes in Mathematics, Vol. 305,1973

2. Deligne-Lusztig constructions for unipotent and 𝑝-adic groups;Boyarchenko, Mitya,2012

3. A motivated introduction to character sheaves and the orbit method for unipotent groups in positive characteristic;Boyarchenko, Mitya,2006

4. Geometric realization of special cases of local Langlands and Jacquet-Langlands correspondences;Boyarchenko, Mitya,2013

5. Crystalline Dieudonné module theory via formal and rigid geometry;de Jong, A. J.;Inst. Hautes \'Etudes Sci. Publ. Math.,1998

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Steinberg’s cross-section of Newton strata;Mathematische Annalen;2024-05-02

2. Arc-descent for the perfect loop functor and p-adic Deligne–Lusztig spaces;Journal für die reine und angewandte Mathematik (Crelles Journal);2022-10-21

3. The Drinfeld stratification for $${{\,\mathrm{GL}\,}}_n$$;Selecta Mathematica;2021-06-17

4. Affine Deligne–Lusztig varieties at infinite level;Mathematische Annalen;2021-01-22

5. Affinoids in the Lubin–Tate perfectoid space and simple supercuspidal representations II: wild case;Mathematische Annalen;2021-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3