Positivity of Riemann–Roch polynomials and Todd classes of hyperkähler manifolds

Author:

Jiang Chen

Abstract

For a hyperkähler manifold X X of dimension 2 n 2n , Huybrechts showed that there are constants a 0 a_0 , a 2 a_2 , …, a 2 n a_{2n} such that χ ( L ) = i = 0 n a 2 i ( 2 i ) ! q X ( c 1 ( L ) ) i \begin{equation*} \chi (L) =\sum _{i=0}^n\frac {a_{2i}}{(2i)!}q_X(c_1(L))^{i} \end{equation*} for any line bundle L L on X X , where q X q_X is the Beauville–Bogomolov–Fujiki quadratic form of X X . Here the polynomial i = 0 n a 2 i ( 2 i ) ! q i \sum _{i=0}^n\frac {a_{2i}}{(2i)!}q^{i} is called the Riemann–Roch polynomial of X X .

In this paper, we show that all coefficients of the Riemann–Roch polynomial of X X are positive. This confirms a conjecture proposed by Cao and the author, which implies Kawamata’s effective non-vanishing conjecture for projective hyperkähler manifolds. It also confirms a question of Riess on strict monotonicity of Riemann–Roch polynomials.

In order to estimate the coefficients of the Riemann–Roch polynomial, we produce a Lefschetz-type decomposition of t d 1 / 2 ( X ) \mathrm {td}^{1/2}(X) , the root of the Todd genus of X X , via the Rozansky–Witten theory following the ideas of Hitchin and Sawon, and of Nieper-Wißkirchen.

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology,Algebra and Number Theory

Reference31 articles.

1. Variétés Kähleriennes dont la première classe de Chern est nulle;Beauville, Arnaud;J. Differential Geom.,1983

2. Hamiltonian Kählerian manifolds;Bogomolov, F. A.;Dokl. Akad. Nauk SSSR,1978

3. Hirzebruch-Riemann-Roch formulae on irreducible symplectic Kähler manifolds;Nieper, Marc A.;J. Algebraic Geom.,2003

4. Remarks on Kawamata’s effective non-vanishing conjecture for manifolds with trivial first Chern classes;Cao, Yalong;Math. Z.,2020

5. On the cobordism class of the Hilbert scheme of a surface;Ellingsrud, Geir;J. Algebraic Geom.,2001

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The complex genera, symmetric functions and multiple zeta values;Journal of Combinatorial Theory, Series A;2024-08

2. Atomic objects on hyper-Kähler manifolds;Journal of Algebraic Geometry;2024-04-19

3. On Numerical Dimensions of Calabi–Yau Varieties;International Mathematics Research Notices;2023-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3