Random Lipschitz–Killing curvatures: Reduction Principles, Integration by Parts and Wiener chaos

Author:

Vidotto A.

Abstract

In this survey we collect some recent results regarding the Lipschitz–Killing curvatures (LKCs) of the excursion sets of random eigenfunctions on the two-dimensional standard flat torus (arithmetic random waves) and on the two-dimensional unit sphere (random spherical harmonics). In particular, the aim of the present survey is to highlight the key role of integration by parts formulae in order to have an extremely neat expression for the random LKCs. Indeed, the main tool to study local geometric functionals of random waves on manifold is to exploit their Wiener chaos decomposition and show that (often), in the so-called high-energy limit, a single chaotic component dominates their behavior. Moreover, reduction principles show that the dominant Wiener chaotic component of LKCs of random waves’ excursion sets at threshold level u 0 u\ne 0 is proportional to the integral of H 2 ( f ) H_2(f) , f f being the random field of interest and H 2 H_2 the second Hermite polynomial. This will be shown via integration by parts formulae.

Publisher

American Mathematical Society (AMS)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference64 articles.

1. Springer Monographs in Mathematics;Adler, Robert J.,2007

2. CLT for crossings of random trigonometric polynomials;Azaïs, Jean-Marc;Electron. J. Probab.,2013

3. Two point function for critical points of a random plane wave;Beliaev, Dmitry;Int. Math. Res. Not. IMRN,2019

4. Random waves on 𝕋³: nodal area variance and lattice point correlations;Benatar, Jacques;Int. Math. Res. Not. IMRN,2019

5. Volume des ensembles nodaux des fonctions propres du laplacien;Bérard, P.,1985

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asymptotic behaviour of level sets of needlet random fields;Stochastic Processes and their Applications;2023-01

2. A note on 3d-monochromatic random waves and cancellation;Latin American Journal of Probability and Mathematical Statistics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3