Mixed Hodge Structures on Alexander Modules

Author:

Elduque Eva,Geske Christian,Herradón Cueto Moisés,Maxim Laurenţiu,Wang Botong

Abstract

Motivated by the limit mixed Hodge structure on the Milnor fiber of a hypersurface singularity germ, we construct a natural mixed Hodge structure on the torsion part of the Alexander modules of a smooth connected complex algebraic variety. More precisely, let U U be a smooth connected complex algebraic variety and let f : U C f\colon U\to \mathbb {C}^* be an algebraic map inducing an epimorphism in fundamental groups. The pullback of the universal cover of C \mathbb {C}^* by f f gives rise to an infinite cyclic cover U f U^f of U U . The action of the deck group Z \mathbb {Z} on U f U^f induces a Q [ t ± 1 ] \mathbb {Q}[t^{\pm 1}] -module structure on H ( U f ; Q ) H_*(U^f;\mathbb {Q}) . We show that the torsion parts A ( U f ; Q ) A_*(U^f;\mathbb {Q}) of the Alexander modules H ( U f ; Q ) H_*(U^f;\mathbb {Q}) carry canonical Q \mathbb {Q} -mixed Hodge structures. We also prove that the covering map U f U U^f \to U induces a mixed Hodge structure morphism on the torsion parts of the Alexander modules. As applications, we investigate the semisimplicity of A ( U f ; Q ) A_*(U^f;\mathbb {Q}) , as well as possible weights of the constructed mixed Hodge structures. Finally, in the case when f : U C f\colon U\to \mathbb {C}^* is proper, we prove the semisimplicity and purity of A ( U f ; Q ) A_*(U^f;\mathbb {Q}) , and we compare our mixed Hodge structure on A ( U f ; Q ) A_*(U^f;\mathbb {Q}) with the limit mixed Hodge structure on the generic fiber of f f .

Publisher

American Mathematical Society (AMS)

Reference61 articles.

1. Lecture Notes in Mathematics, Vol. 340,1973

2. Faisceaux pervers;Beĭlinson, A. A.,1982

3. Modern Birkh\"{a}user Classics;Borel, A.,2008

4. The monodromy theorem for compact Kähler manifolds and smooth quasi-projective varieties;Budur, Nero;Math. Ann.,2018

5. Jumping coefficients and spectrum of a hyperplane arrangement;Budur, Nero;Math. Ann.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compatibility of Hodge theory on Alexander modules;Revue Roumaine Mathematiques Pures Appliquees;2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3