Conformal dimension and boundaries of planar domains

Author:

Kinneberg Kyle

Abstract

Building off of techniques that were recently developed by M. Carrasco, S. Keith, and B. Kleiner to study the conformal dimension of boundaries of hyperbolic groups, we prove that uniformly perfect boundaries of John domains in C ^ \hat {\mathbb {C}} have conformal dimension equal to 0 or 1. Our proof uses a discretized version of Carrasco’s “uniformly well-spread cut point” condition, which we call the discrete UWS property, that is well-suited to deal with metric spaces that are not linearly connected. More specifically, we prove that boundaries of John domains have the discrete UWS property and that any compact, doubling, uniformly perfect metric space with the discrete UWS property has conformal dimension equal to 0 or 1. In addition, we establish other geometric properties of metric spaces with the discrete UWS property, including connectivity properties of their weak tangents.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference27 articles.

1. Random conformal weldings;Astala, Kari;Acta Math.,2011

2. Hölder continuity of conformal mappings and nonquasiconformal Jordan curves;Becker, Jochen;Comment. Math. Helv.,1982

3. Conformal dimension of the antenna set;Bishop, Christopher J.;Proc. Amer. Math. Soc.,2001

4. Rigidity for quasi-Möbius group actions;Bonk, Mario;J. Differential Geom.,2002

5. Quasi-hyperbolic planes in hyperbolic groups;Bonk, Mario;Proc. Amer. Math. Soc.,2005

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Infinitesimal splitting for spaces with thick curve families and Euclidean embeddings;Annales de l'Institut Fourier;2024-07-03

2. Quasi-self-similar fractals containing "Y" have dimension larger than one;Discrete and Continuous Dynamical Systems;2024

3. Bi-Lipschitz embeddings of quasiconformal trees;Proceedings of the American Mathematical Society;2023-02-02

4. Lipschitz functions on quasiconformal trees;Fundamenta Mathematicae;2023

5. Bi-Lipschitz geometry of quasiconformal trees;Illinois Journal of Mathematics;2022-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3