On a quantitative reversal of Alexandrov’s inequality

Author:

Paouris Grigoris,Pivovarov Peter,Valettas Petros

Abstract

Alexandrov’s inequalities imply that for any convex body A A , the sequence of intrinsic volumes V 1 ( A ) , , V n ( A ) V_1(A),\ldots ,V_n(A) is non-increasing (when suitably normalized). Milman’s random version of Dvoretzky’s theorem shows that a large initial segment of this sequence is essentially constant, up to a critical parameter called the Dvoretzky number. We show that this near-constant behavior actually extends further, up to a different parameter associated with A A . This yields a new quantitative reverse inequality that sits between the approximate reverse Urysohn inequality, due to Figiel–Tomczak–Jaegermann and Pisier, and the sharp reverse Urysohn inequality for zonoids, due to Hug–Schneider. In fact, we study concentration properties of the volume radius and mean width of random projections of A A and show how these lead naturally to such reversals.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference28 articles.

1. Mathematical Surveys and Monographs;Artstein-Avidan, Shiri,2015

2. Volume ratios and a reverse isoperimetric inequality;Ball, Keith;J. London Math. Soc. (2),1991

3. New volume ratio properties for convex symmetric bodies in 𝑅ⁿ;Bourgain, J.;Invent. Math.,1987

4. Estimates for the affine and dual affine quermassintegrals of convex bodies;Dafnis, Nikos;Illinois J. Math.,2012

5. Projections onto Hilbertian subspaces of Banach spaces;Figiel, T.;Israel J. Math.,1979

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hypercontractivity and lower deviation estimates in normed spaces;The Annals of Probability;2022-03-01

2. Affine Invariant Maps for Log-Concave Functions;The Journal of Geometric Analysis;2022-02-03

3. Reverse Alexandrov–Fenchel inequalities for zonoids;Communications in Contemporary Mathematics;2021-09-25

4. Concentration of the Intrinsic Volumes of a Convex Body;Lecture Notes in Mathematics;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3