Computing graded Betti tables of toric surfaces

Author:

Castryck Wouter,Cools Filip,Demeyer Jeroen,Lemmens Alexander

Abstract

We present various facts on the graded Betti table of a projectively embedded toric surface, expressed in terms of the combinatorics of its defining lattice polygon. These facts include explicit formulas for a number of entries, as well as a lower bound on the length of the quadratic strand that we conjecture to be sharp (and prove to be so in several special cases). We also present an algorithm for determining the graded Betti table of a given toric surface by explicitly computing its Koszul cohomology and report on an implementation in SageMath. It works well for ambient projective spaces of dimension up to roughly 25 25 , depending on the concrete combinatorics, although the current implementation runs in finite characteristic only. As a main application we obtain the graded Betti table of the Veronese surface ν 6 ( P 2 ) P 27 \nu _6(\mathbb {P}^2) \subseteq \mathbb {P}^{27} in characteristic 40 009 40\,009 . This allows us to formulate precise conjectures predicting what certain entries look like in the case of an arbitrary Veronese surface ν d ( P 2 ) \nu _d(\mathbb {P}^2) .

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference45 articles.

1. University Lecture Series;Aprodu, Marian,2010

2. Adam Boocher, Wouter Castryck, Milena Hering and Alexander Lemmens, Torus weights of resolutions of Veronese embeddings, in preparation.

3. The Magma algebra system. I. The user language;Bosma, Wieb;J. Symbolic Comput.,1997

4. Juliette Bruce, Daniel Erman, Steve Goldstein, and Jay Yang, Conjectures and computations of Veronese syzygies, Experimental Mathematics, to appear.

5. Koszul homology and syzygies of Veronese subalgebras;Bruns, Winfried;Math. Ann.,2011

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strictly positive polynomials in the boundary of the SOS cone;Journal of Symbolic Computation;2025-03

2. Convexity of Distinct Sum Sets;Studia Scientiarum Mathematicarum Hungarica;2022-04-01

3. Syzygies of P1×P1: Data and conjectures;Journal of Algebra;2022-03

4. Sums of squares and quadratic persistence on real projective varieties;Journal of the European Mathematical Society;2021-09-23

5. On syzygies of Segre embeddings of P1×P1;Communications in Algebra;2020-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3