Totally geodesic surfaces in the complex quadric

Author:

Moruz Marilena,Van der Veken Joeri,Vrancken Luc,Wijffels Anne

Abstract

We provide explicit descriptions of all totally geodesic surfaces of a complex quadric of arbitrary dimension. Totally geodesic submanifolds of complex quadrics were first studied by Chen and Nagano in 1977 and fully classified by Klein in 2008. In particular, we interpret some of these surfaces as Gaussian images of surfaces in a unit three-sphere and all others as elements of the Veronese sequence introduced by Bolton, Jensen, Rigoli and Woodward. We also briefly discuss how the classification can be translated to the non-compact dual of the complex quadric, namely the hyperbolic complex quadric.

Publisher

American Mathematical Society

Reference13 articles.

1. On conformal minimal immersions of 𝑆² into 𝐶𝑃ⁿ;Bolton, John;Math. Ann.,1988

2. Minimal surfaces in 𝐶𝑃ⁿ with constant curvature and Kähler angle;Bolton, J.;Math. Proc. Cambridge Philos. Soc.,1992

3. Minimal Lagrangian surfaces in 𝕊²×𝕊²;Castro, Ildefonso;Comm. Anal. Geom.,2007

4. Totally geodesic submanifolds of symmetric spaces. I;Chen, Bang-yen;Duke Math. J.,1977

5. Submanifold geometry in symmetric spaces of noncompact type;Díaz-Ramos, J. Carlos;S\~{a}o Paulo J. Math. Sci.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3