Multiradical isogenies

Author:

Castryck Wouter,Decru Thomas

Abstract

We argue that for all integers N 2 N \geq 2 and g 1 g \geq 1 there exist “multiradical” isogeny formulae, that can be iteratively applied to compute ( N k , , N k ) (N^k, \ldots , N^k) -isogenies between principally polarized g g -dimensional abelian varieties, for any value of k 2 k \geq 2 . The formulae are complete: each iteration involves the extraction of g ( g + 1 ) / 2 g(g+1)/2 different N N th roots, whence the epithet multiradical, and by varying which roots are chosen one computes all N g ( g + 1 ) / 2 N^{g(g+1)/2} extensions to an ( N k , , N k ) (N^k, \ldots , N^k) -isogeny of the incoming ( N k 1 , , N k 1 ) (N^{k-1}, \ldots , N^{k-1}) -isogeny. Our group-theoretic argumentation is heuristic, but it is supported by concrete formulae for several prominent families. As our main application, we illustrate the use of multiradical isogenies by implementing a hash function from ( 3 , 3 ) (3,3) -isogenies between Jacobians of superspecial genus- 2 2 curves, showing that it outperforms its ( 2 , 2 ) (2,2) -counterpart by an asymptotic factor 9 \approx 9 in terms of speed.

Publisher

American Mathematical Society

Reference45 articles.

1. Iurie Boreico, My favorite problem – linear independence of radicals, The Harvard College Mathematics Review, vol. 2, 2008, pp. 87–92.

2. Genus-2 curves and Jacobians with a given number of points;Bröker, Reinier;LMS J. Comput. Math.,2015

3. The arithmetic of genus two curves with (4,4)-split Jacobians;Bruin, Nils;Canad. J. Math.,2011

4. Descent via (3,3)-isogeny on Jacobians of genus 2 curves;Bruin, Nils;Acta Arith.,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3