A note on splitting numbers for Galois covers and 𝜋₁-equivalent Zariski 𝑘-plets

Author:

Shirane Taketo

Abstract

In this paper, we introduce splitting numbers of subvarieties in a smooth complex variety for a Galois cover, and prove that the splitting numbers are invariant under certain homeomorphisms. In particular cases, we show that splitting numbers enable us to distinguish the topology of complex plane curves even if the fundamental groups of the complements of plane curves are isomorphic. Consequently, we prove that there are π 1 \pi _1 -equivalent Zariski k k -plets for any integer k 2 k\geq 2 .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference18 articles.

1. Sur les couples de Zariski;Artal-Bartolo, Enrique;J. Algebraic Geom.,1994

2. Braid monodromy and topology of plane curves;Artal Bartolo, Enrique;Duke Math. J.,2003

3. A survey on Zariski pairs;Artal Bartolo, Enrique,2008

4. E. Artal Bartolo, V. Florens, and B. Guerville-Ballé, A topological invariant of line arrangements, Preprint available at arXiv : 1407.3387v1. 2014.

5. Zariski 𝑘-plets of rational curve arrangements and dihedral covers;Artal Bartolo, Enrique;Topology Appl.,2004

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3