Puzzle geometry and rigidity: The Fibonacci cycle is hyperbolic

Author:

Smania Daniel

Abstract

We describe a new and robust method to prove rigidity results in complex dynamics. The new ingredient is the geometry of the critical puzzle pieces: under control of geometry and “complex bounds”, two generalized polynomial-like maps which admit a topological conjugacy, quasiconformal outside the filled-in Julia set, are indeed quasiconformally conjugate. The proof uses a new abstract removability-type result for quasiconformal maps, following ideas of Heinonen and Koskela and of Kallunki and Koskela, optimized for applications in complex dynamics. We prove, as the first application of this new method, that, for even criticalities distinct from two, the period two cycle of the Fibonacci renormalization operator is hyperbolic with 1 1 -dimensional unstable manifold.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference30 articles.

1. Riemann’s mapping theorem for variable metrics;Ahlfors, Lars;Ann. of Math. (2),1960

2. Regular or stochastic dynamics in real analytic families of unimodal maps;Avila, Artur;Invent. Math.,2003

3. Remarks on Sobolev imbedding inequalities;Bojarski, B.,1988

4. Cubic polynomials: turning around the connectedness locus;Branner, Bodil,1993

5. The iteration of cubic polynomials. I. The global topology of parameter space;Branner, Bodil;Acta Math.,1988

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metric definition of quasiconformality and exceptional sets;Mathematische Annalen;2023-09-23

2. The Dynamics of Complex Box Mappings;Arnold Mathematical Journal;2022-05-27

3. Invariant measures for interval maps without Lyapunov exponents;Ergodic Theory and Dynamical Systems;2021-11-15

4. The Attractor of Fibonacci-like Renormalization Operator;Acta Mathematica Sinica, English Series;2020-11

5. Solenoidal attractors with bounded combinatorics are shy;Annals of Mathematics;2020-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3