Well-posedness of the Prandtl equation in Sobolev spaces

Author:

Alexandre R.,Wang Y.-G.,Xu C.-J.,Yang T.

Abstract

We develop a new approach to study the well-posedness theory of the Prandtl equation in Sobolev spaces by using a direct energy method under a monotonicity condition on the tangential velocity field instead of using the Crocco transformation. Precisely, we firstly investigate the linearized Prandtl equation in some weighted Sobolev spaces when the tangential velocity of the background state is monotonic in the normal variable. Then to cope with the loss of regularity of the perturbation with respect to the background state due to the degeneracy of the equation, we apply the Nash-Moser-Hörmander iteration to obtain a well-posedness theory of classical solutions to the nonlinear Prandtl equation when the initial data is a small perturbation of a monotonic shear flow.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference22 articles.

1. Graduate Studies in Mathematics;Alinhac, Serge,2007

2. Existence and singularities for the Prandtl boundary layer equations;Caflisch, R. E.;ZAMM Z. Angew. Math. Mech.,2000

3. Studies in Mathematics and its Applications;Chazarain, Jacques,1982

4. Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation;E, Weinan;Acta Math. Sin. (Engl. Ser.),2000

5. Blowup of solutions of the unsteady Prandtl’s equation;E, Weinan;Comm. Pure Appl. Math.,1997

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3