Topology of the Grünbaum–Hadwiger–Ramos hyperplane mass partition problem

Author:

Blagojević Pavle,Frick Florian,Haase Albert,Ziegler Günter

Abstract

In 1960 Grünbaum asked whether for any finite mass in R d \mathbb {R}^d there are d d hyperplanes that cut it into 2 d 2^d equal parts. This was proved by Hadwiger (1966) for d 3 d\le 3 , but disproved by Avis (1984) for d 5 d\ge 5 , while the case d = 4 d=4 remained open.

More generally, Ramos (1996) asked for the smallest dimension Δ ( j , k ) \Delta (j,k) in which for any j j masses there are k k affine hyperplanes that simultaneously cut each of the masses into 2 k 2^k equal parts. At present the best lower bounds on Δ ( j , k ) \Delta (j,k) are provided by Avis (1984) and Ramos (1996), the best upper bounds by Mani-Levitska, Vrećica and Živaljević (2006). The problem has been an active testing ground for advanced machinery from equivariant topology.

We give a critical review of the work on the Grünbaum–Hadwiger–Ramos problem, which includes the documentation of essential gaps in the proofs for some previous claims. Furthermore, we establish that Δ ( j , 2 ) = 1 2 ( 3 j + 1 ) \Delta (j,2)= \frac 12(3j+1) in the cases when j 1 j-1 is a power of  2 2 , j 5 j\ge 5 .

Funder

Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference34 articles.

1. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences];Adem, Alejandro,1994

2. Nonpartitionable point sets;Avis, David;Inform. Process. Lett.,1984

3. The early history of the ham sandwich theorem;Beyer, W. A.;Amer. Math. Monthly,2004

4. Nerves, fibers and homotopy groups;Björner, Anders;J. Combin. Theory Ser. A,2003

5. Using equivariant obstruction theory in combinatorial geometry;Blagojević, Pavle V. M.;Topology Appl.,2007

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The generalized Makeev problem revisited;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2024-03-11

2. Transversal Generalizations of Hyperplane Equipartitions;International Mathematics Research Notices;2023-09-25

3. Generalizations of the Yao–Yao Partition Theorem and Central Transversal Theorems;Discrete & Computational Geometry;2023-07-13

4. Topology of the Grünbaum-Hadwiger-Ramos problem for mass assignments;Topological Methods in Nonlinear Analysis;2023-03-04

5. Bisections of Mass Assignments Using Flags of Affine Spaces;Discrete & Computational Geometry;2022-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3