Tate resolutions and MCM approximations

Author:

Eisenbud David,Schreyer Frank-Olaf

Abstract

Let M M be a finitely generated Cohen-Macaulay module of codimension m m over a Gorenstein Ring R = S / I R = S/I , where S S is a regular ring. We show how to form a quasi-isomorphism ϕ \phi from an R R -free resolution of M M to the dual of an R R -free resolution of M E x t R m ( M , R ) M^{\vee }\colonequals {\mathrm {Ext}}_{R}^{m}(M,R) using the S S -free resolutions of R R and M M . The mapping cone of ϕ \phi is then a Tate resolution of M M , allowing us to compute the maximal Cohen-Macaulay approximation of M M .

In the case when R R is 0-dimensional local, and M M is the residue field, the formula for ϕ \phi becomes a formula for the socle of R R generalizing a well-known formula for the socle of a zero-dimensional complete intersection.

When I J S I\subset J\subset S are ideals generated by regular sequences, the R R -module M = S / J M = S/J is called a quasi-complete intersection, and ϕ \phi was studied in detail by Kustin and Şega. We relate their construction to the sequence of “Eagon-Northcott”-like complexes originally introduced by Buchsbaum and Eisenbud.

Publisher

American Mathematical Society

Reference12 articles.

1. The homological theory of maximal Cohen-Macaulay approximations;Auslander, Maurice;M\'{e}m. Soc. Math. France (N.S.),1989

2. Quasi-complete intersection homomorphisms;Avramov, Luchezar L.;Pure Appl. Math. Q.,2013

3. Remarks on ideals and resolutions;Buchsbaum, David A.,1973

4. [Bu] R. Buchweitz, Maximal Cohen-Macaulay Modules and Tate-cohomology over Gorenstein Rings, written around 1985, to appear in the AMS series “Mathematical Surveys and Monographs”.

5. A sequence of complexes associated with a matrix;Kirby, D.;J. London Math. Soc. (2),1974

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A self-dual complete resolution;Journal of Algebra and Its Applications;2022-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3