Stability of depth and Stanley depth of symbolic powers of squarefree monomial ideals

Author:

Seyed Fakhari S. A.

Abstract

Let K \mathbb {K} be a field and let S = K [ x 1 , , x n ] S=\mathbb {K}[x_1,\dots ,x_n] be the polynomial ring in n n variables over K \mathbb {K} . Assume that I S I\subset S is a squarefree monomial ideal. For every integer k 1 k\geq 1 , we denote the k k -th symbolic power of I I by I ( k ) I^{(k)} . Recently, Montaño and Núñez-Betancourt (2018), and independently Nguyen and Trung (to appear), proved that for every pair of integers k , i 1 k, i\geq 1 , d e p t h ( S / I ( k ) ) d e p t h ( S / I ( k i ) ) . \begin{equation*} \mathrm {depth}(S/I^{(k)})\leq \mathrm {depth}(S/I^{(\lceil \frac {k}{i}\rceil )}). \end{equation*} We provide an alternative proof for this inequality. Moreover, we re-prove the known results that the sequence { d e p t h ( S / I ( k ) ) } k = 1 \{\mathrm {depth}(S/I^{(k)})\}_{k=1}^{\infty } is convergent and min k d e p t h ( S / I ( k ) ) = lim k d e p t h ( S / I ( k ) ) = n s ( I ) , \begin{equation*} \min _k\mathrm {depth}(S/I^{(k)})=\lim _{k\rightarrow \infty }\mathrm {depth}(S/I^{(k)})=n-\ell _s(I), \end{equation*} where s ( I ) \ell _s(I) denotes the symbolic analytic spread of I I . We also determine an upper bound for the index of depth stability of symbolic powers of I I . Next, we consider the Stanley depth of symbolic powers and prove that the sequences { s d e p t h ( S / I ( k ) ) } k = 1 \{\mathrm {sdepth}(S/I^{(k)})\}_{k=1}^{\infty } and { s d e p t h ( I ( k ) ) } k = 1 \{\mathrm {sdepth}(I^{(k)})\}_{k=1}^{\infty } are convergent and the limit of each sequence is equal to its minimum. Furthermore, we determine an upper bound for the indices of sdepth stability of symbolic powers.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference26 articles.

1. The cleanness of (symbolic) powers of Stanley-Reisner ideals;Bandari, Somayeh;Czechoslovak Math. J.,2017

2. The asymptotic nature of the analytic spread;Brodmann, M.;Math. Proc. Cambridge Philos. Soc.,1979

3. Codimension and analytic spread;Burch, Lindsay;Proc. Cambridge Philos. Soc.,1972

4. A non-partitionable Cohen-Macaulay simplicial complex;Duval, Art M.;Adv. Math.,2016

5. A survey on Stanley depth;Herzog, Jürgen,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lower bounds for the depth of the second power of edge ideals;Collectanea Mathematica;2023-03-07

2. Limit behavior of the rational powers of monomial ideals;Journal of Algebra and Its Applications;2021-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3