Relative Manin–Mumford in additive extensions

Author:

Schmidt Harry

Abstract

In recent papers Masser and Zannier have proved various results of “relative Manin–Mumford” type for various families of abelian varieties, some with field of definition restricted to the algebraic numbers. Typically these imply the finiteness of the set of torsion points on a curve in the family. After Bertrand, Masser, and Zannier discovered some surprising counterexamples for multiplicative extensions of elliptic families, the three authors together with Pillay settled completely the situation for this case over the algebraic numbers. Here we treat the last remaining case of surfaces, that of additive extensions of elliptic families, and even over the field of all complex numbers. In particular analogous counterexamples do not exist. There are finiteness consequences for Pell’s equation over polynomial rings and integration in elementary terms. Our work can be made effective (as opposed to most of that preceding), mainly because we use counting results only for analytic curves.

Funder

Engineering and Physical Sciences Research Council

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference34 articles.

1. Extensions de 𝐷-modules et groupes de Galois différentiels;Bertrand, D.,1990

2. [B2] D. Bertrand, Special points and Poincaré bi-extensions, arXiv:1104.5178 (2011). With an appendix by Bas Edixhoven.

3. Generalized jacobians and Pellian polynomials;Bertrand, Daniel;J. Th\'{e}or. Nombres Bordeaux,2015

4. New Mathematical Monographs;Bombieri, Enrico,2006

5. Relative Manin-Mumford for semi-Abelian surfaces;Bertrand, D.;Proc. Edinb. Math. Soc. (2),2016

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Point counting for foliations over number fields;Forum of Mathematics, Pi;2022

2. Betti maps, Pell equations in polynomials and almost-Belyi maps;Forum of Mathematics, Sigma;2022

3. On the torsion values for sections of an elliptic scheme;Journal für die reine und angewandte Mathematik (Crelles Journal);2021-10-28

4. Rational values of transcendental functions and arithmetic dynamics;Journal of the European Mathematical Society;2021-07-20

5. Pfaffian definitions of Weierstrass elliptic functions;Mathematische Annalen;2020-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3