Bounded cohomology classes of exact forms

Author:

Battista Ludovico,Francaviglia Stefano,Moraschini Marco,Sarti Filippo,Savini Alessio

Abstract

On negatively curved compact manifolds, it is possible to associate to every closed form a bounded cocycle – hence a bounded cohomology class – via integration over straight simplices. The kernel of this map is contained in the space of exact forms. We show that in degree 2 this kernel is trivial, in contrast with higher degree. In other words, exact non-zero 2 2 -forms define non-trivial bounded cohomology classes.

This result is the higher dimensional version of a classical theorem by Barge and Ghys [Invent. Math. 92 (1988), pp. 509–526] for surfaces. As a consequence, one gets that the second bounded cohomology of negatively curved manifolds contains an infinite dimensional space, whose classes are explicitly described by integration of forms. This also showcases that some recent results by Marasco [Proc. Amer. Math. Soc. 151 (2023), pp. 2707–2715] can be applied in higher dimension to obtain new non-trivial results on the vanishing of certain cup products and Massey products. Some other applications are discussed.

Funder

Università di Bologna

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference24 articles.

1. Bounded cohomology of subgroups of mapping class groups;Bestvina, Mladen;Geom. Topol.,2002

2. Surfaces et cohomologie bornée;Barge, Jean;Invent. Math.,1988

3. Hyperplane sections in arithmetic hyperbolic manifolds;Bergeron, Nicolas;J. Lond. Math. Soc. (2),2011

4. Exactitude à gauche du foncteur 𝐻ⁿ_{𝑏}(-,ℝ) de cohomologie bornée réelle;Bouarich, Abdesselam;Ann. Fac. Sci. Toulouse Math. (6),2001

5. Some remarks on bounded cohomology;Brooks, Robert,1981

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-commutative Barge-Ghys Quasimorphisms;International Mathematics Research Notices;2024-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3