On a multi-integral norm defined by weighted sums of log-concave random vectors

Author:

Skarmogiannis Nikos

Abstract

Let C C and K K be centrally symmetric convex bodies in R n {\mathbb R}^n . We show that if C C is isotropic then t C s , K = C C j = 1 s t j x j K d x s d x 1 c 1 L C ( log n ) 5 n M ( K ) t 2 \begin{equation*} \|\mathbf {t}\|_{C^s,K}=\int _{C}\cdots \int _{C}\Big \|\sum _{j=1}^st_jx_j\Big \|_K\,dx_s\cdots dx_1 \leqslant c_1L_C(\log n)^5\,\sqrt {n}M(K)\|\mathbf {t}\|_2 \end{equation*} for every s 1 s\geqslant 1 and t = ( t 1 , , t s ) R s \mathbf {t}=(t_1,\ldots ,t_s)\in {\mathbb R}^s , where L C L_C is the isotropic constant of C C and M ( K ) S n 1 ξ K d σ ( ξ ) M(K)≔\int _{S^{n-1}}\|\xi \|_Kd\sigma (\xi ) . This reduces a question of V. Milman to the problem of estimating from above the parameter M ( K ) M(K) of an isotropic convex body. The proof is based on an observation that combines results of Eldan, Lehec and Klartag on the slicing problem: If μ \mu is an isotropic log-concave probability measure on R n {\mathbb R}^n then, for any centrally symmetric convex body K K in R n {\mathbb R}^n , we have that I 1 ( μ , K ) R n x K d μ ( x ) c 2 n ( log n ) 5 M ( K ) . \begin{equation*} I_1(\mu ,K)≔\int _{{\mathbb R}^n}\|x\|_K\,d\mu (x)\leqslant c_2\sqrt {n}(\log n)^5\,M(K). \end{equation*} We illustrate the use of this inequality with further applications.

Funder

Hellenic Foundation for Research and Innovation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference22 articles.

1. Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles;Adamczak, Radosław;J. Amer. Math. Soc.,2010

2. Mathematical Surveys and Monographs;Artstein-Avidan, Shiri,2015

3. Mathematical Surveys and Monographs;Artstein-Avidan, Shiri,[2021] \copyright2021

4. Convex set functions in 𝑑-space;Borell, C.;Period. Math. Hungar.,1975

5. On the distribution of polynomials on high-dimensional convex sets;Bourgain, J.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3