Polynomial tractability for integration in an unweighted function space with absolutely convergent Fourier series

Author:

Goda Takashi

Abstract

In this note, we prove that the following function space with absolutely convergent Fourier series \[ F d { f L 2 ( [ 0 , 1 ) d ) | f k Z d | f ^ ( k ) | max ( 1 , min j supp ( k ) log | k j | ) > } F_d≔\left \{ f\in L^2([0,1)^d)\middle | \|f\|≔\sum _{\boldsymbol {k}\in {\mathbb {Z}}^d}|\hat {f}({\boldsymbol {k}}) |\max \left (1,\min _{j\in \operatorname {supp}({\boldsymbol {k}})}\log |k_j|\right )>\infty \right \} \] with f ^ ( k ) \hat {f}({\boldsymbol {k}}) being the k {\boldsymbol {k}} -th Fourier coefficient of f f and supp ( k ) { j { 1 , , d } k j 0 } \operatorname {supp}({\boldsymbol {k}}) ≔\{j\!\in \!\{1,\ldots ,d\}\mid k_j\neq 0\} is polynomially tractable for multivariate integration in the worst-case setting. Here polynomial tractability means that the minimum number of function evaluations required to make the worst-case error less than or equal to a tolerance ε \varepsilon grows only polynomially with respect to ε 1 \varepsilon ^{-1} and d d . It is important to remark that the function space F d F_d is unweighted, that is, all variables contribute equally to the norm of functions. Our tractability result is in contrast to those for most of the unweighted integration problems studied in the literature, in which polynomial tractability does not hold and the problem suffers from the curse of dimensionality. Our proof is constructive in the sense that we provide an explicit quasi-Monte Carlo rule that attains a desired worst-case error bound.

Funder

Japan Society for the Promotion of Science

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tractability of sampling recovery on unweighted function classes;Proceedings of the American Mathematical Society, Series B;2024-05-15

2. On the information complexity for integration in subspaces of the Wiener algebra;Journal of Complexity;2024-04

3. Optimal Algorithms for Numerical Integration: Recent Results and Open Problems;Springer Proceedings in Mathematics & Statistics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3