Ortho-isomorphisms of Grassmann spaces in semifinite factors

Author:

Shi Weijuan,Shen Junhao,Ma Minghui

Abstract

Let M \mathcal M be a semifinite factor with a faithful normal semifinite tracial weight τ \tau , and P \mathscr P the set of all projections in M \mathcal M . Denote by P c \mathscr P_{c} the Grassmann space of all projections in P \mathscr P with trace c c , where c c is a positive real number. A map ψ : P c P c \psi : \mathscr P_c\rightarrow \mathscr P_c is called an ortho-isomorphism if ψ \psi is a bijection of P c \mathscr P_c onto P c \mathscr P_c satisfying, for all P , Q P c P,Q\in \mathscr P_c , P Q P\perp Q if and only if ψ ( P ) ψ ( Q ) \psi (P)\perp \psi (Q) . The aim of this paper is to establish a version of Uhlhorn’s theorem in the setting of semifinite factors. We give a complete characterization of ortho-isomorphisms on Grassmann space P c \mathscr P_c in a semifinite factor. And we show that an ortho-isomorphism ψ : P c P c \psi : \mathscr P_c\rightarrow \mathscr P_c can be extended to a Jordan * -isomorphism ρ \rho of M \mathcal M onto M \mathcal M . As an application, we obtain the structure of surjective isometries on P c \mathscr P_c with respect to strictly increasing unitarily invariant norms.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Orthogonality preserving maps on a Grassmann space in semifinite factors;Proceedings of the American Mathematical Society;2024-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3