Minimal nondegenerate extensions

Author:

Johnson-Freyd Theo,Reutter David

Abstract

We prove that every slightly degenerate braided fusion category admits a minimal nondegenerate extension, and hence that every pseudo-unitary super modular tensor category admits a minimal modular extension. This completes the program of characterizing minimal nondegenerate extensions of braided fusion categories.

Our proof relies on the new subject of fusion 2 2 -categories. We study in detail the Drinfel’d centre Z ( M o d - B ) \mathcal {Z}({_{}\mathrm {Mod}\text {-}\mathcal {B}}) of the fusion 2 2 -category M o d - B {_{}\mathrm {Mod}\text {-}\mathcal {B}} of module categories of a braided fusion 1 1 -category B \mathcal {B} . We show that minimal nondegenerate extensions of B \mathcal {B} correspond to certain trivializations of Z ( M o d - B ) \mathcal {Z}({_{}\mathrm {Mod}\text {-}\mathcal {B}}) . In the slightly degenerate case, such trivializations are obstructed by a class in H 5 ( K ( Z 2 , 2 ) ; k × ) H^5(K(\mathbb {Z}_2, 2); \mathbb {k}^\times ) and we use a numerical invariant—defined by evaluating a certain two-dimensional topological field theory on a Klein bottle—to prove that this obstruction always vanishes.

Along the way, we develop techniques to explicitly compute in braided fusion 2 2 -categories which we expect will be of independent interest. In addition to the model of Z ( M o d - B ) \mathcal {Z}({_{}\mathrm {Mod}\text {-}\mathcal {B}}) in terms of braided B \mathcal {B} -module categories, we develop a computationally useful model in terms of certain algebra objects in  B \mathcal {B} . We construct an S S -matrix pairing for any braided fusion 2 2 -category, and show that it is nondegenerate for Z ( M o d - B ) \mathcal {Z}({_{}\mathrm {Mod}\text {-}\mathcal {B}}) . As a corollary, we identify components of Z ( M o d - B ) \mathcal {Z}({_{}\mathrm {Mod}\text {-}\mathcal {B}}) with blocks in the annular category of B \mathcal {B} and with the homomorphisms from the Grothendieck ring of the Müger centre of B \mathcal {B} to the ground field.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference78 articles.

1. Spin modular categories;Beliakova, Anna;Quantum Topol.,2017

2. [BDSV15] B. Bartlett, C. L. Douglas, C. J. Schommer-Pries, and J. Vicary, Modular categories as representations of the 3-dimensional bordism 2-category, 2015. \nolinkurl{arXiv:1509.06811}.

3. Fermionic modular categories and the 16-fold way;Bruillard, Paul;J. Math. Phys.,2017

4. [BJS18] A. Brochier, D. Jordan, and N. Snyder, On dualizability of braided tensor categories, 2018. \nolinkurl{arXiv:1804.07538}.

5. A spin decomposition of the Verlinde formulas for type A modular categories;Blanchet, Christian;Comm. Math. Phys.,2005

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Categories of Quantum Liquids II;Communications in Mathematical Physics;2024-08-20

2. Gapped Boundaries of Fermionic Topological Orders and Higher Central Charges;Physical Review Letters;2024-08-20

3. Fusion surface models: 2+1d lattice models from fusion 2-categories;SciPost Physics;2024-06-03

4. Local modules in braided monoidal 2-categories;Journal of Mathematical Physics;2024-06-01

5. Modular extension of topological orders from congruence representations;Physical Review B;2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3