Geometric Satake, Springer correspondence, and small representations II

Author:

Achar Pramod,Henderson Anthony,Riche Simon

Abstract

For a split reductive group scheme G ˇ \check G over a commutative ring k \Bbbk with Weyl group W W , there is an important functor R e p ( G ˇ , k ) R e p ( W , k ) {\mathsf {Rep}}(\check G,\Bbbk )\to {\mathsf {Rep}}(W,\Bbbk ) defined by taking the zero weight space. We prove that the restriction of this functor to the subcategory of small representations has an alternative geometric description, in terms of the affine Grassmannian and the nilpotent cone of the Langlands dual group G G . The translation from representation theory to geometry is via the Satake equivalence and the Springer correspondence. This generalizes the result for the k = C \Bbbk =\mathbb {C} case proved by the first two authors, and also provides a better explanation than in the earlier paper, since the current proof is uniform across all types.

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference44 articles.

1. Green functions via hyperbolic localization;Achar, Pramod N.;Doc. Math.,2011

2. Geometric Satake, Springer correspondence and small representations;Achar, Pramod N.;Selecta Math. (N.S.),2013

3. Weyl group actions on the Springer sheaf;Achar, Pramod N.;Proc. Lond. Math. Soc. (3),2014

4. [AHJR2] P. Achar, A. Henderson, D. Juteau, S. Riche, Modular generalized Springer correspondence I: the general linear group, to appear in J. Eur. Math. Soc. (JEMS), arXiv:1307.2702.

5. [AHJR3] P. Achar, A. Henderson, D. Juteau, S. Riche, Modular generalized Springer correspondence II: classical groups, to appear in J. Eur. Math. Soc. (JEMS), arXiv:1404.1096.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BFN Springer Theory;Communications in Mathematical Physics;2023-05-31

2. Nilpotent varieties in symmetric spaces and twisted affine Schubert varieties;Representation Theory of the American Mathematical Society;2022-06-02

3. KLR and Schur Algebras for Curves and Semi-Cuspidal Representations;International Mathematics Research Notices;2022-03-25

4. Weyl group action on weight zero Mirković-Vilonen basis and equivariant multiplicities;Advances in Mathematics;2021-07

5. Formality and Lusztig’s Generalized Springer Correspondence;Algebras and Representation Theory;2020-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3