Low-regularity exponential-type integrators for the Zakharov system with rough data in all dimensions

Author:

Li Hang,Su Chunmei

Abstract

We propose and analyze a type of low-regularity exponential-type integrators (LREIs) for the Zakharov system (ZS) with rough solutions. Our LREIs include a first-order integrator and a second-order one, and they achieve optimal convergence under weaker regularity assumptions on the exact solution compared to the existing numerical methods in literature. Specifically, the first-order integrator exhibits linear convergence in H m + 2 ( T d ) × H m + 1 ( T d ) × H m ( T d ) H^{m+2}(\mathbb {T}^d)\times H^{m+1}(\mathbb {T}^d)\times H^m(\mathbb {T}^d) for solutions in H m + 3 ( T d ) × H m + 2 ( T d ) × H m + 1 ( T d ) H^{m+3}(\mathbb {T}^d)\times H^{m+2}(\mathbb {T}^d)\times H^{m+1}(\mathbb {T}^d) if m > d / 2 m>d/2 , meaning that only the boundedness of one additional derivative of the solution is required to achieve the first-order convergence. While for the second-order integrator, we show that it achieves second-order accuracy by requiring the boundedness of two additional spatial derivatives of the solution. The order of additional derivatives required is reduced by half compared to the classical trigonometric integrators. The main techniques to design the integrators include a reformulation by introducing new variables to exclude the loss of spatial regularity in the original ZS, accurate integration for the dominant term in the linear part of the equations and appropriate approximations (or averaging approximations) to the exponential phase functions involving the nonlinear interactions. Numerical comparisons with classical integrators confirm that our newly proposed LREIs are superior in accuracy and robustness for handling rough data.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

American Mathematical Society (AMS)

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3