From discrete to continuous: Monochromatic 3-term arithmetic progressions

Author:

Greenwood Torin,Kariv Jonathan,Williams Noah

Abstract

We prove a known 2-coloring of the integers [ N ] { 1 , 2 , 3 , , N } [N] ≔\{1,2,3,\dots ,N\} minimizes the number of monochromatic arithmetic 3-progressions under certain restrictions. A monochromatic arithmetic progression is a set of equally-spaced integers that are all the same color. Previous work by Parrilo, Robertson and Saracino conjectured an optimal coloring for large N N that involves 12 12 colored blocks. Here, we prove that the conjectured coloring minimizes monochromatic arithmetic 3 3 -progressions among anti-symmetric colorings with 12 12 or fewer colored blocks. We leverage a connection to the coloring of the continuous interval [ 0 , 1 ] [0,1] used by Parrilo, Robertson, and Saracino as well as by Butler, Costello and Graham. Our proof identifies classes of colorings with permutations, then counts the permutations using mixed integer linear programming.

Publisher

American Mathematical Society (AMS)

Reference22 articles.

1. Gnu linear programming kit, 2012, \url{http://www.gnu.org/softw are/glpk/glpk.html}.

2. MAA Spectrum;Bressoud, David M.,1999

3. Finding patterns avoiding many monochromatic constellations;Butler, Steve;Experiment. Math.,2010

4. Unrolling residues to avoid progressions;Butler, Steve;Math. Mag.,2014

5. Avoiding monochromatic solutions to 3-term equations;Costello, Kevin P.;J. Comb.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3