Algebraicity of the metric tangent cones and equivariant K-stability

Author:

Li Chi,Wang Xiaowei,Xu Chenyang

Abstract

We prove two new results on the K K -polystability of Q \mathbb {Q} -Fano varieties based on purely algebro-geometric arguments. The first one says that any K K -semistable log Fano cone has a special degeneration to a uniquely determined K K -polystable log Fano cone. As a corollary, we combine it with the differential-geometric results to complete the proof of Donaldson-Sun’s conjecture which says that the metric tangent cone of any point appearing on a Gromov-Hausdorff limit of Kähler-Einstein Fano manifolds depends only on the algebraic structure of the singularity. The second result says that for any log Fano variety with the torus action, K K -polystability is equivalent to equivariant K K -polystability, that is, to check K K -polystability, it is sufficient to check special test configurations which are equivariant under the torus action.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference48 articles.

1. K-polystability of ℚ-Fano varieties admitting Kähler-Einstein metrics;Berman, Robert J.;Invent. Math.,2016

2. Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties;Berman, Robert J.;J. Reine Angew. Math.,2019

3. Existence of minimal models for varieties of log general type;Birkar, Caucher;J. Amer. Math. Soc.,2010

4. Existence of valuations with smallest normalized volume;Blum, Harold;Compos. Math.,2018

5. Valuation spaces and multiplier ideals on singular varieties;Boucksom, S.,2015

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kähler–Ricci Flow on $${\textbf{G}}$$-Spherical Fano Manifolds;Peking Mathematical Journal;2024-08-13

2. Wall crossing for K‐moduli spaces of plane curves;Proceedings of the London Mathematical Society;2024-06

3. Some models for bubbling of (log) Kähler–Einstein metrics;ANNALI DELL'UNIVERSITA' DI FERRARA;2024-05-21

4. Moduli of genus six curves and K-stability;Transactions of the American Mathematical Society, Series B;2024-05-02

5. On local stability threshold of del Pezzo surfaces;Journal of the London Mathematical Society;2024-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3