Bridge trisections of knotted surfaces in 𝑆⁴

Author:

Meier Jeffrey,Zupan Alexander

Abstract

We introduce bridge trisections of knotted surfaces in the 4–sphere. This description is inspired by the work of Gay and Kirby on trisections of 4–manifolds and extends the classical concept of bridge splittings of links in the 3–sphere to four dimensions. We prove that every knotted surface in the 4–sphere admits a bridge trisection (a decomposition into three simple pieces) and that any two bridge trisections for a fixed surface are related by a sequence of stabilizations and destabilizations. We also introduce a corresponding diagrammatic representation of knotted surfaces and describe a set of moves that suffice to pass between two diagrams for the same surface. Using these decompositions, we define a new complexity measure: the bridge number of a knotted surface. In addition, we classify bridge trisections with low complexity, we relate bridge trisections to the fundamental groups of knotted surface complements, and we prove that there exist knotted surfaces with arbitrarily large bridge number.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference32 articles.

1. Problems in low-dimensional topology,1997

2. Zur Isotopie zweidimensionaler Flächen im 𝑅₄;Artin, Emil;Abh. Math. Sem. Univ. Hamburg,1925

3. Thin position for tangles;Bachman, David;J. Knot Theory Ramifications,2003

4. The 𝜋-orbifold group of a link;Boileau, Michel;Math. Z.,1989

5. Mathematical Surveys and Monographs;Carter, J. Scott,1998

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trisections obtained by trivially regluing surface-knots;Geometriae Dedicata;2024-04-13

2. Filling braided links with trisected surfaces;Algebraic & Geometric Topology;2024-04-12

3. A family of Andrews–Curtis trivializations via 4-manifold trisections;Geometriae Dedicata;2024-02-19

4. Nonsmooth manifold decompositions;Journal of Geometry and Physics;2023-12

5. Bounds for Kirby–Thompson invariants of knotted surfaces;Geometriae Dedicata;2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3