Donoghue 𝑚-functions for Singular Sturm–Liouville operators

Author:

Gesztesy F.,Littlejohn L.,Nichols R.,Piorkowski M.,Stanfill J.

Abstract

Let A ˙ \dot {A} be a densely defined, closed, symmetric operator in the complex, separable Hilbert space H \mathcal {H} with equal deficiency indices and denote by N i = ker ( ( A ˙ ) i I H ) \mathcal {N}_i = \ker ((\dot {A})^* - i I_{\mathcal {H}}) , dim ( N i ) = k N { } \dim (\mathcal {N}_i)=k\in \mathbb {N} \cup \{\infty \} , the associated deficiency subspace of A ˙ \dot {A} . If A A denotes a self-adjoint extension of A ˙ \dot {A} in H \mathcal {H} , the Donoghue m m -operator M A , N i D o ( ) M_{A,\mathcal {N}_i}^{Do} (\,\cdot \,) in N i \mathcal {N}_i associated with the pair ( A , N i ) (A,\mathcal {N}_i) is given by M A , N i D o ( z ) = z I N i + ( z 2 + 1 ) P N i ( A z I H ) 1 P N i | N i M_{A,\mathcal {N}_i}^{Do}(z)=zI_{\mathcal {N}_i} + (z^2+1) P_{\mathcal {N}_i} (A - z I_{\mathcal {H}})^{-1} P_{\mathcal {N}_i} \vert _{\mathcal {N}_i} , z C R , z\in \mathbb {C}\setminus \mathbb {R}, with I N i I_{\mathcal {N}_i} the identity operator in N i \mathcal {N}_i , and P N i P_{\mathcal {N}_i} the orthogonal projection in H \mathcal {H} onto  N i \mathcal {N}_i .

Assuming the standard local integrability hypotheses on the coefficients p , q , r p, q,r , we study all self-adjoint realizations corresponding to the differential expression τ = 1 r ( x ) [ d d x p ( x ) d d x + q ( x ) ] \tau =\frac {1}{r(x)}[-\frac {d}{dx}p(x)\frac {d}{dx} + q(x)] for a.e.  x ( a , b ) R x\in (a,b) \subseteq \mathbb {R} , in L 2 ( ( a , b ) ; r d x ) L^2((a,b); rdx) , and, as our principal aim in this paper, systematically construct the associated Donoghue m m -functions (respectively, ( 2 × 2 ) (2 \times 2) matrices) in all cases where τ \tau is in the limit circle case at least at one interval endpoint a a or b b .

Publisher

American Mathematical Society (AMS)

Reference83 articles.

1. National Bureau of Standards Applied Mathematics Series, No. 55;Abramowitz, Milton,1964

2. Explicit Krein resolvent identities for singular Sturm-Liouville operators with applications to Bessel operators;Blake Allan, S.;Oper. Matrices,2020

3. Generalized 𝑄-functions and Dirichlet-to-Neumann maps for elliptic differential operators;Alpay, Daniel;J. Funct. Anal.,2009

4. 𝑀 operators: a generalisation of Weyl-Titchmarsh theory;Amrein, W. O.;J. Comput. Appl. Math.,2004

5. Monographs in Mathematics;Behrndt, Jussi,[2020] \copyright2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sturm–Liouville M-functions in terms of Green's functions;Journal of Differential Equations;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3