Renormalization towers and their forcing

Author:

Blokh Alexander,Misiurewicz Michał

Abstract

A cyclic permutation π : { 1 , , N } { 1 , , N } \pi :\{1, \dots , N\}\to \{1, \dots , N\} has a block structure if there is a partition of { 1 , , N } \{1, \dots , N\} into k { 1 , N } k\notin \{1,N\} segments of consecutive integers (blocks) of the same length, permuted by π \pi ; call k k the period of this block structure. Let p 1 > > p s p_1>\dots >p_s be periods of all possible block structures on π \pi . Call the finite string ( p 1 / 1 , (p_1/1, p 2 / p 1 , p_2/p_1, , \dots , p s / p s 1 , N / p s ) p_s/p_{s-1}, N/p_s) the renormalization tower of π \pi . The same terminology can be used for patterns, i.e., for families of cycles of interval maps inducing the same, up to the flip of the entire orbit, cyclic permutation (thus, there are two permutations, one of whom is a flip of the other one, that define a pattern). A renormalization tower M \mathcal M forces a renormalization tower N \mathcal N if every continuous interval map with a cycle of pattern with renormalization tower M \mathcal M must have a cycle of pattern with renormalization tower N \mathcal N . We completely characterize the forcing relation among renormalization towers. Take the following order among natural numbers: 4 6 3 8 10 5 4 n 4 n + 2 2 n + 1 2 1 4\gg 6\gg 3\gg 8\gg 10\gg 5\gg \dots \gg 4n\gg 4n+2\gg 2n+1\gg \dots \gg 2\gg 1 understood in the strict sense (we write consecutive even numbers, starting with 4, then insert m m after each number of the form 2 ( 2 s + 1 ) 2(2s+1) , and finally append the order with 2 and 1). We show that the forcing relation among renormalization towers is given by the lexicographic extension of this order. Moreover, for any tail T T of this order there exists an interval map for which the set of renormalization towers of its cycles equals T T .

Funder

Simons Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference15 articles.

1. Periodic orbits of maps of 𝑌;Alsedà, Lluís;Trans. Amer. Math. Soc.,1989

2. Advanced Series in Nonlinear Dynamics;Alsedà, Lluís,2000

3. Periodic orbits of continuous mappings of the circle;Block, Louis;Trans. Amer. Math. Soc.,1980

4. Rotation numbers, twists and a Sharkovskiĭ-Misiurewicz-type ordering for patterns on the interval;Blokh, A. M.;Ergodic Theory Dynam. Systems,1995

5. New order for periodic orbits of interval maps;Blokh, Alexander;Ergodic Theory Dynam. Systems,1997

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolution of the Sharkovsky Theorem;Ukrainian Mathematical Journal;2024-06

2. Evolution of the Sharkovsky theorem;Ukrains’kyi Matematychnyi Zhurnal;2024-02-02

3. Combinatorial Dynamics on the Interval;SpringerBriefs in Mathematics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3