Generating functions for 𝐾-theoretic Donaldson invariants and Le Potier’s strange duality

Author:

Göttsche Lothar,Yuan Yao

Abstract

For a projective algebraic surface X X with an ample line bundle H H , let M H X ( c ) M_H^X(c) be the moduli space H H -semistable sheaves E \mathcal {E} of class c c in the Grothendieck group K ( X ) K(X) . We write c = ( r , c 1 , c 2 ) c=(r,c_1,c_2) or c = ( r , c 1 , χ ) c=(r,c_1,\chi ) with r r the rank, c 1 , c 2 c_1,c_2 the Chern classes, and χ \chi the holomorphic Euler characteristic. We also write M H X ( 2 , c 1 , c 2 ) = M X X ( c 1 , d ) M_H^X(2,c_1,c_2)=M_X^X(c_1,d) , with d = 4 c 2 c 1 2 d=4c_2-c_1^2 . The K K -theoretic Donaldson invariants are the holomorphic Euler characteristics χ ( M H X ( c 1 , d ) , μ ( L ) ) \chi (M_H^X(c_1,d),\mu (L)) , where μ ( L ) \mu (L) is the determinant line bundle associated to a line bundle on X X . More generally for suitable classes c K ( X ) c^*\in K(X) there is a determinant line bundle D c , c \mathcal {D}_{c,c^*} on M H X ( c ) M^X_H(c) . We first compute some generating functions for K K -theoretic Donaldson invariants on P 2 \mathbb {P}^2 and rational ruled surfaces, using the wallcrossing formula of [Pure Appl. Math. Q. 5 (2009), pp. 1029–1111].

Then we show that Le Potier’s strange duality conjecture relating H 0 ( M H X ( c ) , D c , c ) H^0(M^X_H(c),\mathcal {D}_{c,c^*}) and H 0 ( M H X ( c ) , D c , c ) H^0(M^X_H(c^*),\mathcal {D}_{c^*,c}) holds for the cases c = ( 2 , c 1 = 0 , c 2 > 2 ) c=(2,c_1=0,c_2>2) and c = ( 0 , L , χ = 0 ) c^{*}=(0,L,\chi =0) with L = K X L=-K_X on P 2 \mathbb {P}^2 , and L = K X L=-K_X or K X + F -K_X+F on P 1 × P 1 \mathbb {P}^1\times \mathbb {P}^1 and P 2 ^ \widehat {\mathbb {P}^2} with F F the fibre class of the ruling, and also the case c = ( 2 , H , c 2 ) c=(2,H,c_2) and c = ( 0 , 2 H , χ = 1 ) c^*=(0,2H,\chi =-1) on P 2 \mathbb {P}^2 .

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology,Algebra and Number Theory

Reference28 articles.

1. Deformation of rank 2 quasi-bundles and some strange dualities for rational surfaces;Abe, Takeshi;Duke Math. J.,2010

2. Translations of Mathematical Monographs;Akhiezer, N. I.,1990

3. Vector bundles on curves and generalized theta functions: recent results and open problems;Beauville, Arnaud,1995

4. The strange duality conjecture for generic curves;Belkale, Prakash;J. Amer. Math. Soc.,2008

5. Strange duality and the Hitchin/WZW connection;Belkale, Prakash;J. Differential Geom.,2009

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blowup formulas for Segre and Verlinde numbers of surfaces and higher rank Donaldson invariants;Proceedings of Symposia in Pure Mathematics;2024

2. Rank-one sheaves and stable pairs on surfaces;Advances in Mathematics;2022-06

3. Higher rank Segre integrals over the Hilbert scheme of points;Journal of the European Mathematical Society;2021-08-24

4. Verlinde formulae on complex surfaces: K-theoretic invariants;Forum of Mathematics, Sigma;2021

5. Strange duality on P2 via quiver representations;Advances in Mathematics;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3