Generalization of a connectedness result to cohomologically complete intersections

Author:

Hellus Michael

Abstract

It is a well-known result from Hartshorne that, in projective space over a field, every set-theoretical complete intersection of positive dimension is connected in codimension one. Another important connectedness result (also from Hartshorne) is that a local ring with disconnected punctured spectrum has depth at most  1 1 . The two results are related; Hartshorne calls the latter “the keystone to the proof” of the former.

In this short note we show how the latter result generalizes smoothly from set-theoretical to cohomologically complete intersections, i.e., to ideals for which there is in terms of local cohomology no obstruction to be a complete intersection.

The proof is based on the fact that for cohomologically complete intersections over a complete local ring, the endomorphism ring of the (only) local cohomology module is the ring itself and hence is indecomposable as a module.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference9 articles.

1. Algebraisation of some formal vector bundles;Faltings, Gerd;Ann. of Math. (2),1979

2. Complete intersections and connectedness;Hartshorne, Robin;Amer. J. Math.,1962

3. Cohomological dimension of algebraic varieties;Hartshorne, Robin;Ann. of Math. (2),1968

4. [He] M. Hellus, Local cohomology and Matlis duality, Habilitationsschrift, Leipzig, 2006, available at \url{https://www.uni-regensburg.de/mathematik/mathematik-hellus/medien/habilitationsschriftohnedeckblatt.pdf}

5. On cohomologically complete intersections;Hellus, Michael;J. Algebra,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3