Rank reduction of string C-group representations

Author:

Brooksbank Peter,Leemans Dimitri

Abstract

We show that a rank reduction technique for string C-group representations first used in [Adv. Math. 228 (2018), pp. 3207–3222] for the symmetric groups generalizes to arbitrary settings. The technique permits us, among other things, to prove that orthogonal groups defined on d d -dimensional modules over fields of even order greater than 2 possess string C-group representations of all ranks 3 n d 3\leqslant n\leqslant d . The broad applicability of the rank reduction technique provides fresh impetus to construct, for suitable families of groups, string C-groups of highest possible rank. It also suggests that the alternating group Alt ( 11 ) \operatorname {Alt}(11) —the only known group having “rank gaps”—is perhaps more unusual than previously thought.

Funder

Simons Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference9 articles.

1. P. A. Brooksbank, J. T. Ferrara, and D. Leemans, Orthogonal groups in characteristic 2 acting on polytopes of high rank, Discrete Comput. Geom. (2019), https://doi.org/10.1007/s00454-019-00083-0.

2. C-groups of Suzuki type;Connor, Thomas;J. Algebraic Combin.,2015

3. Polytopes of high rank for the symmetric groups;Fernandes, Maria Elisa;Adv. Math.,2011

4. M. E. Fernandes and D. Leemans, String C-group representations of alternating groups, preprint, arXiv 1810.12450, 2018.

5. Polytopes of high rank for the alternating groups;Fernandes, Maria Elisa;J. Combin. Theory Ser. A,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The number of string C-groups of high rank;Advances in Mathematics;2024-09

2. A rank augmentation theorem for rank three string C-group representations of the symmetric groups;Journal of Algebraic Combinatorics;2024-02-16

3. Two families of unravelled abstract regular polytopes in B;Journal of Group Theory;2022-07-12

4. String C-group representations of alternating groups;Ars Mathematica Contemporanea;2019-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3