Fourier optimization and Montgomery’s pair correlation conjecture

Author:

Carneiro Emanuel,Milinovich Micah,Ramos Antonio Pedro

Abstract

Assuming the Riemann hypothesis, we improve the current upper and lower bounds for the average value of Montgomery’s function F ( α , T ) F(\alpha , T) over long intervals by means of a Fourier optimization framework. The function F ( α , T ) F(\alpha , T) is often used to study the pair correlation of the non-trivial zeros of the Riemann zeta-function. Two ideas play a central role in our approach: (i) the introduction of new averaging mechanisms in our conceptual framework and (ii) the full use of the class of test functions introduced by Cohn and Elkies for the sphere packing bounds, going beyond the usual class of bandlimited functions. We conclude that such an average value, that is conjectured to be 1 1 , lies between 0.9303 0.9303 and 1.3208 1.3208 . Our Fourier optimization framework also yields an improvement on the current bounds for the analogous problem concerning the non-trivial zeros in the family of Dirichlet L L -functions.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Reference23 articles.

1. S. A. C. Baluyot, D. A. Goldston, A. I. Suriajaya, and C. L. Turnage-Butterbaugh, An unconditional Montgomery theorem for pair correlation of zeros of the Riemann zeta function, Acta Arith. (to appear), DOI 10.4064/aa230612-20-3.

2. Small gaps and small spacings between zeta zeros;Bui, Hung M.;Acta Arith.,2023

3. On Montgomery’s pair correlation conjecture: a tale of three integrals;Carneiro, Emanuel;J. Reine Angew. Math.,2022

4. Hilbert spaces and the pair correlation of zeros of the Riemann zeta-function;Carneiro, Emanuel;J. Reine Angew. Math.,2017

5. E. Carneiro, M. B. Milinovich, A. P. Ramos, and E. Quesada-Herrera, Fourier optimization, the least quadratic non-residue, and the least prime in an arithmetic progression, preprint, 2024, arXiv:2404.08380.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3